Skip to Contents

인공지능

  • Add Bookmark
    • Category : Engineering > Computer Science
    • Keyword : AI,Artificial ,Artificial Intelligence,bigdata,dataprocessing
    • Taught by : Less Sangkyun
    • Created By : Hanyang University
    • Offered By : KOCW
    • Date Added : 2019.10.08

    In this lecture, we study machine learning, which is a central part of the artificial intelligence study nowdays, at an introductory level. We will discuss fundamental ideas in machine learning, such as perceptron, neural networks, logistic regression, SVM, kernelizaion, decision trees, k-NN, PCA, and clutering. We also study how to use these techniques in Python. Some practical problems on sentiment and image analysis problems will be discussed as well.

    Creative Commons License
    This work is licensed under a
    Creative Commons
    Attribution-NonCommercial-ShareAlike 4.0
    International License
    .
    • User Rating :
    • Comments : 0
    • Hits : 16

Lesson / 22 Lesson facebook twitter

차시별 강의
No Document type Subject Categorization item Url source Copy
1. Document type weblink Subject Categorization item
  • Learning from data
Url source Copy
2. Document type weblink Subject Categorization item
  • Perceptron Algorithm
Url source Copy
3. Document type weblink Subject Categorization item
  • Perceptron model learning
Url source Copy
4. Document type weblink Subject Categorization item
  • Perceptron
Url source Copy
5. Document type weblink Subject Categorization item
  • Scikit-learn
Url source Copy
6. Document type weblink Subject Categorization item
  • Logistic Regression
Url source Copy
7. Document type weblink Subject Categorization item
  • Support Vector Machine
Url source Copy
8. Document type weblink Subject Categorization item
  • Information Gain
Url source Copy
9. Document type weblink Subject Categorization item
  • Dealing with missing data
Url source Copy
10. Document type weblink Subject Categorization item
  • K-nearest neighbors
Url source Copy
11. Document type weblink Subject Categorization item
  • Supervised data compression via linear discriminant analysis
Url source Copy
12. Document type weblink Subject Categorization item
  • Principal component anlysis
Url source Copy
13. Document type weblink Subject Categorization item
  • Model evaluation an dhyperparameter tuning
Url source Copy
14. Document type weblink Subject Categorization item
  • Ensemble learning 1
Url source Copy
15. Document type weblink Subject Categorization item
  • Ensemble learning 2
Url source Copy
16. Document type weblink Subject Categorization item
  • Sentiment analysis
Url source Copy
17. Document type weblink Subject Categorization item
  • Sentiment analysis and regression
Url source Copy
18. Document type weblink Subject Categorization item
  • Regression analysis 1
Url source Copy
19. Document type weblink Subject Categorization item
  • Regression analysis 2
Url source Copy
20. Document type weblink Subject Categorization item
  • Clustering
Url source Copy
21. Document type weblink Subject Categorization item
  • Image recognition 1
Url source Copy
22. Document type weblink Subject Categorization item
  • Image recognition 2
Url source Copy